Linking chemical reactivity, magic numbers, and local electronic properties of clusters
نویسندگان
چکیده
The interplay of local energetics, local electron occupancies, and local density of states is the key to the understanding of chemical reactivity. We define local measures, within a nonorthogonal tight-binding scheme, which clearly and unambiguously determine these local properties for an aggregate of atoms, such as a solid or a cluster. Using these measures, we identify the electronic level mechanisms responsible for the chemical reactivity of clusters of different sizes. A clear and concise picture of why Si33 is chemically inert while Si49A is reactive emerges from this analysis. A scheme for quantifying the dangling bonds is also presented in this work. @S0163-1829~99!01511-8#
منابع مشابه
Size Evolution Study of the Electronic and Magnetic Properties of MgO Nanoclusters
Magnesium oxide nanoclusters have attracted much attention due to their potential applications to catalysis and novel optoelectronic materials. In the present study, we have studied the electronic and magnetic properties of the stoichiometric magnesium oxide nanoclusters (MgO)n for n = 2-20. Although the binding energy increases with the size of the cluster, it re...
متن کاملElectronic Structure and Properties of Molecules and Clusters: Density Functional Theory Based Approach
A theoretical basis for the concepts of chemical reactivity, selectivity and stability of molecular complexes has been discussed within the framework of density functional theory. In particular, special attention has been focused on the development of a theoretical formulation to establish a relation between the total energy changes with respect to the changes in the chemical potential and hard...
متن کاملInvestigation of structural and electronic properties of small Au n Cu m (n+m≤5) nano-clusters for Oxygen adsorption
In this study, the structures, the IR spectroscopy, and the electronic properties of AunCum (n+m≤5) bimetallic clusters were studied and compared with those of pure gold and copper clusters using the generalized gradient approximation (GGA) and exchange correlation density functional theory (DFT). The study of an O2-AunCum system is important to identify the promotion effects of each of the two...
متن کاملInvestigation of structural and electronic properties of small Au n Cu m (n+m≤5) nano-clusters for Oxygen adsorption
In this study, the structures, the IR spectroscopy, and the electronic properties of AunCum (n+m≤5) bimetallic clusters were studied and compared with those of pure gold and copper clusters using the generalized gradient approximation (GGA) and exchange correlation density functional theory (DFT). The study of an O2-AunCum system is important to identify the promotion effects of each of the two...
متن کاملExperimental and theoretical studies on inorganic magic clusters : M4X6 (M = W, Mo, X = O, S)
Studies using ultraviolet photoelectron spectroscopy (UPS) and density functional theory (DFT) demonstrate that M4X6 (M = W, Mo and X = O, S) clusters show large gaps (about 2 eV) between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), indicative of their high stability and chemical inertness. In particular, W4O6 has a lower symmetry and a large...
متن کامل